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Force on a circular cylinder in viscous oscillatory 
flow at low Keulegan-Carpenter numbers 
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This paper presents the in-line force coefficients for circular cylinders in planar 
oscillatory flows of small amplitude. The results are compared with the theoretical 
predictions of Stokes (1851) and Wang (1968). For two-dimensional, attached- and 
laminar-flow conditions the data are, as expected, in good agreement with the 
Stokes-Wang analysis. The oscillatory viscous flow becomes unstable to  axially 
periodic vortices above a critical Keulegan4arpenter number K (K = Urn T / D ,  
Urn = the maximum velocity in a cycle, T = the period of flow oscillation, and 
D = the diameter of the circular cylinder) for a given /l (/l = Re/K = D2/vT, 
Re = Urn Dlv ,  and v = the kinematic viscosity of fluid) as shown experimentally by 
Honji (1981) and theoretically by Hall (1984). The present investigation has shown 
that the Keulegan-Carpenter number at which the drag coefficient c d  deviates rather 
abruptly from the Stokes-Wang prediction nearly corresponds to the critical K at 
which the vortical instability occurs. 

1. Introduction 
Sinusoidally oscillating flow about a cylinder or the sinusoidal motion of a cylinder 

in a viscous fluid otherwise at rest has long been of special interest to fluid dynamicists 
and offshore engineers (see e.g. Keulegan & Carpenter 1958; Sarpkaya 1976, 1977; 
Bearman et al. 1985). The in-line force acting on the cylinder is assumed to be given 
by a linear sum of the drag and inertial forces per unit length as 

in which p is the density of fluid, D the diameter of the circular cylinder, U the velocity 
of the ambient flow ( U  = Urn cos 8 with 8 = 2xt/T),  T the period of flow oscillation, 
and t the time. C,  and Crn represent the drag and inertia coefficients, to be determined 
experimentally through the use of the method of least squares or Fourier averaging 
over a cycle (see e.g. Keulegan & Carpenter 1958; Sarpkaya & Isaacson 1981). 
Equation (1) is known as the Morison equation. It will be referred to hereafter as the 
MOJS equation to recognize the joint contributions of its originators (Morison, 
O’Brien, Johnson and Schaaf 1950). Equation (1) was proposed as an approximate 
solution to a complex problem. Its justification is strictly pragmatic and rests with 
experimental confirmation. 

A great deal of experimental effort has been devoted during the past decade to the 
determination of the drag and inertia coefficients, particularly for smooth and rough 
circular cylinders, in terms of the Keuleganxarpenter number (K = Urn TID),  
Reynolds number (Re = Urn D/u) or /l (= D2/vT),  and the relative roughness k / D  
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(Sarpkaya 1976 ; Sarpkaya & Isaacson 1981, where numerous additional references 
may be found). The analytical efforts, based largely on some form of the shear-layer 
discretization, have not been successful in predicting the characteristics of sinusoidally 
oscillating separated flow primarily because there does not yet exist a sound method 
for the determination of the position of the separation points on a circular cylinder 
in a time-dependent turbulent boundary-layer flow. 

Practically all the laboratory and ocean-based experiments have been conducted 
for K larger than about 4 and it is assumed that C,  for K < 4 is unimportant and 
C ,  has the theoreticalpotential-flow value of the body shape tested. These assumptions 
miss a number of interesting flow phenomena and ignore the possibility that for large 
two- or three-dimensional bodies near the ocean bottom (small K and large Re) C, 
may be quite large and the actual value of C,  may exceed its ideal value. 

Stokes (1851) was the first to show that the force acting on a cylinder or sphere 
oscillating sinusoidally in a viscous fluid is dependent on both K and Re (or /?). In 
the case of afixed circular cylinder in a sinusoidally oscillating flow Stokes force may 
be expressed in terms of the MOJS equation by noting that over a flow cycle 
(cos 81 cos 8 may be approximated by (8/3x) cos 8. Then one has (see also Rosenhead 
1963, p. 392) 

(2) 
3x3 c, = &(?I/?)-?+ (xp ) - ’+o(x /? ) -q  

and c, = 2 + 4(7c/?) -4 + O(./?,-i. (3) 

Equations (2) and (3) are valid only for large values of /?. Wang (1968) extended this 
analysis to O [ ( x P ) - f ]  using the method of inner and outer expansions. His solution, 
va l idforK4 l ,ReK<l ,and/3>>1,maybereducedto  

and c, = 2+4(x /? ) - :+ (x /? ) - t .  

The expressions (4) and (5) differ from (2) and (3) only in the last terms. Stokes and 
Wang’s solutions yield virtually identical results in the range of their validity, i.e. 
for large /?. 

Relatively few experiments have been carried out with sinusoidally oscillating 
cylinders at low Keuleganearpenter numbers. Honji (1981) oscillated a circular 
cylinder in water at rest in the range of 70 < /3 < 700 and 0 < K < 4 and investigated 
the stability of the flow. He has delineated three regions in the (K, /?)-plane : a region 
(corresponding to relatively small K) in which no ‘streaks’ formed because the flow 
remained attached, stable and two-dimensional ; a second region in which the flow 
became unstable to axially periodic vortices (‘equally spaced horizontal streaks of 
chains of separated dye sheets, each in a form like a mushroom ’) ; and a third region 
in which no clear streaks formed because the flow became turbulent ‘due to long 
standing separation’. Honji attributed the instability in the second region to 
centrifugal forces. 

Subsequently, Hall (1984) carried out a stability analysis of that flow, valid only 
in the limit /? + 00 and K + 0, and showed that ‘oscillatory viscous flows interacting 
with rigid boundaries of convex curvature can become unstable to Taylor-Gortler 
vortices ’. His analysis validated Honji’s data. 
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Hall’s critical Keulegan-Carpenter number may be written as 

K,, = Re,,//3 = 5.778/3-f( 1 + 0.205/3-: + . . .), (6) 

according to which the critical Reynolds number Recr increases with increasing /3 (e.g., 
Recr = 6433, K,, = 0.57 for /3 = 11 240). 

Bearman et al. (1985) reported experimental data and analysis for a number of 
cylinders of different cross-section including circular cylinders and sharp-edged 
sections in planar oscillatory flows of small amplitude. Their maximum /3 for the 
circular cylinders was 1665. They have concluded that the experimental values of c d  

are in approximate agreement with Wang’s predictions below a given value of K ,  
‘(depending on the /3 parameter, but somewhere in the region of 2)’. They have 
attributed the increase in C, for K > K ,  to the onset of flow separation and vortex 
shedding, thereby suggesting that the laminar-flow analysis of Wang (1968) is valid 
up to the onset of laminar separation. Their C ,  data agreed fairly well with that given 
by (5 )  for K < K,. Bearman et aZ.’s data did not permit them to make a connection 
between the Stokes-Wang analysis, Honji’s data and Hall’s stability analysis. 

The present paper presents in-line force data for one rough and three smooth 
cylinders over a large range of /3 with measurements carried out in oscillatory flow 
in a U-shaped water tunnel. The original aim of the investigation was to provide data 
and to check the validity of the Stokes-Wang analysis. However, the experiments 
provided information beyond the original objectives and helped to establish a 
connection between the variation of C,, inception of the vortical instability, 
boundary-layer transition, and flow separation. 

2. Experimental arrangement and presentation of results 
Force measurements were carried out in a U-shaped oscillating-flow tunnel. It is 

6.7 m high and has a 10.7 m long horizontal test section of 0.92 m width and 1.45 m 
height. Purely sinusoidal oscillations can be maintained indefinitely a t  the desired 
amplitude. For this purpose the output of a 1 hp fan is connected to the top of one 
of the legs of the tunnel through a 1 m diameter pipe. A butterfly valve between the 
top of the tunnel and the supply line oscillates sinusoidally at the natural period of 
water oscillations in the tunnel (5.3525 s), synchronized with the water oscillation 
by using an electronic feedback control system. The amplitude of the oscillations is 
varied by constricting or enlarging an orifice a t  the exit of the fan. The amplitude 
of the oscillations is measured both by a differential pressure transducer and two 
capacitance gauges. 

Each cylinder was 0.92 m long and mounted horizontally, being supported at each 
end on specially designed load cells. The ends of the test cylinder were closed and 
a gap of about 0.5 mm was provided between the ends and-the tunnel walls. The 
unfiltered in-line force and flow oscillation signals were recorded simultaneously in 
digitized form (720 points per cycle per signal) through the use of an A/D converter. 
The Fourier-averaged drag and inertia coefficients were calculated from the average 
of 50 cycles of data. Experiments for a given cylinder were repeated at least three times 
on different days. Cylinders of various diameters were used to achieve the desired 
/3 values. 

The drag and inertia coefficients for smooth cylinders are presented in figures 1 
(B = 1035), 2 (/3 = 1380), and 3 (/3 = 11240) as a function of K. Figure 4 shows the 
force coefficients for a sand-roughened cylinder ( k / D  = &, and /3 = 1800). Another 
important characteristic of the calculated and measured in-line forces, normalized 
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FIQURE 1. Drag and inertia coefficients vs Keulegan-Carpenter number. 
Experiment: 0 ,  Cm; *, Cd; theory, - (all for = 1035). 

with respect to O.5pDVm, is their root-mean-square values, which may be shown, 
through the use of the MOJS equation, to reduce to (Sarpkaya 1976)i 

Figure 5 shows the experimental values of Cf(r.m.s.) as a function of K. Equation 
(7) shows that Cf(r.m.s.) approaches its inviscid value of d ( 2 )  n 2 / K  for large /3 (i.e. for 
C, = 0 and C, = 2). The experimental data fall on this asymptotic theoretical line 
(except for K larger than about 9). This is entirely expected since the second term 
in (7) dominates Cf(r.m,s.), i.e. the flow is in the inertia-dominated regime. 

Flow-visualization studies were carried out in a glass-sided water tank of 62 cm 
high, 244 em long and 122 cm wide. Three smooth cylinders of D = 2.54cm 
(LID = 24), 5.08 ern (LID = 12) and 7.7 em ( L I D  = 6.85) and one sand-roughened 
cylinder ( D  = 5.08 cm, k / D  = A) were oscillated sinusoidally by means of a 
slider-crank mechanism. The apparatus and the method of flow visualization 
(electrolytic precipitation from a thin strip of solder) were nearly identical with those 
used by Honji (1981). The cylinders were held in a vertical position. There was a gap 
of about 1 mm between the end of the cylinder and the glass bottom of the water 
tank. The solder strips were about 2 mm wide. The cylinder surface and the solder 
strips were roughened with sand, which was sieved and uniformly applied on the 
cylinder surface with an air-drying epoxy paint (for additional details see Sarpkaya 
1976). A thin layer of oil was spread over the free surface to prevent evaporation 
cooling and thereby minimize convection currents. Figure 6 is a sample picture of 
the streaked flow along the cylinder (K = 1.1, p = 1380). The streaks are nearly 
equally spaced along the cylinder (about O.M.7 D). The vortex sheets forming on 
the cylinder on each side of the streak wrap up into a pair of vortices of opposite sign, 

t Note that there is a printing error in Bearman et aZ.'s (1985) equation (6) corresponding to 
our equation (7). 
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Experiment: 0, Cm; *, Cd; theory, - (all for /I = 1380). 
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K 

giving the streak a mushroom-shaped cross-section. The roll-up of the vortex sheets 
is known to be accompanied by Helmholtz instability which produces turbulence. It 
was not possible to observe Helmholtz instability in the present tests owing to a 
number of difficulties associated with the size of the streaks. 

Honji (1981) did not give a name to the vortical instability and noted that it ‘seems 
to be a kind of centrifugal one’. Hall (1984) called it the ‘Taylor-Gortler instability’ 
and referred to the streaks as the ‘Taylor4ortler cells’. The original Gortler 
instability involved laminar flow on a concave surface and gave wavelengths of the 
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order of the boundary-layer thickness in steady flow. The instability associated with 
the flow on a cylinder oscillating transversely in a fluid a t  rest is of the order of the 
cylinder diameter. Furthermore, it is subcritical in nature, as noted by Hall. In the 
Taylor problem the bifurcation to a Taylor-vortex flow is almost invariably 
supercritical. Thus, it appears that it is probably not appropriate to call the streaked 
flow under consideration the Taylor4ortler instability in spite of a number of 
similarities. It may be called ' Honji instability ', vortical instability, or the instability 
of the steady streaming boundary-layer flow. 

Honji's data, Hall's prediction [(S)] and the present data are shown in figure 7. The 
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FIGURE 6. Formation of mushroom-shaped vortices (Honji instability) on a smooth cylinder. 
Direction of cylinder oscillation is parallel to this page. Left: 2nt/T = 100'; Right: 2nt/T = 90' 
(both for K = 1.1 and B = 1380). 

upper data points (symbols x )  denote transition to turbulence over the smooth 
cylinder. These points exhibit larger scatter due to the fact that the observation of 
transition is somewhat subjective. Also shown in figure 7 is the mean line through 
the data points at which separation was observed to occur on smooth cylinders. It 
must be emphasized that the determination of the onset of separation is just as 
subjective as that of transition due to a number of difficulties associated with the 
flow visualization. If the voltage applied between the solder strip and the electrode 
is kept below 5 volts, the white smoke (a metallic compound) is rather weak and its 
separation from the cylinder surface is not easy to see. If the voltage is increased to 
10 volts, the white smoke becomes quite strong and clearly visible. However, the 
observations must be made rather quickly (in about 5 min) since the metallic 
compound (slightly heavier than water) begins to roll downwards along the cylinder 
surface and gives rise to complex three-dimensional streak sheets. In  spite of these 
difficulties it was possible to delineate fairly accurately whether the separation 
preceded or followed the transition. 

The flow-visualization experiments with the rough cylinder were considerably more 
difficult partly due to the onset of instability at relatively smaller K, partly due to 
the diffusion of the metallic smoke by the time it reached the separation points and 
partly because the K values at which separation occurred were considerably higher 
than those for the smooth cylinder. It is because of these difficulties that the efforts 
were concentrated on one particular value of /3. Repeated tests with = 1800 yielded 
K,, = 0.40, Kt = 1.1 (onset of turbulence), and K ,  = 2 (separation). 
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3. Discussion of results 
Figure 1 shows four broad regimes of flow: (i) 0 < K < Kcr (Kc, x 0.75 for 

/3 = 1035), referred to  hereafter as the Stokes-Wang regime, where the laminar flow 
is attached and stable; (ii) K,, < K < Kmd (Kmd x 1.6 for /3 = 1035), where the 
laminar flow becomes unstable to axially periodic vortices, which eventually leads to  
separation, turbulence and minimum C,. It must be emphasized that here the term 
‘eventually’ refers to a change taking place with increase of the parameter K. Thus, 
there exists a flow regime for a particular set of K and /3 values for which the vortices 
are in a stable state but not turbulent; (iii) Kmd < K < K* where c d  increases and 
the effects of flow separation and vortex shedding become increasingly important, 
eventually leading to a very interesting half KBrman vortex street in the transverse 
direction in the range 8 < K < 13t (Bearman et al. 1981 ; Bearman 1985; Sarpkaya 
1985; Williamson 1985) ; and (iv) K > K* where c d  decreases and the number of shed 
vortices and flow modes increase. This last regime will not be discussed here further 
since i t  is outside the scope of the work reported herein. 

According to figure 7, Kcr = 1.06, Recr = 1097, K, x 1.5 and Kt x 1.7 forp = 1035. 
In  figure 1,  cd deviates from the Stokes-Wang prediction between K,, = 0.7 and 0.8 
(Recr = 725 and 825). The minimum c d  in figure 1 is seen to  occur at Kmd x 1.6. Thus, 
it appears that the minimum drag occurs shortly after separation and when the 
boundary layer becomes turbulent, at least for the smooth cylinder with /3 = 1035. 
The differences between K,, K,, and Kmd are too small and certainly within the limits 
of the experimental errors. 

Figure 2 shows the same four regimes for /3 = 1380 with the addition of a region 

t The lower limit of this range roughly corresponds to the K-value at which Cf(r.m.s.) (figure 
5) breaks away from the theoretical line. Thus, K x 8 may be regarded aa the upper limit of the 
inertia-dominated regime. Also, the inception of the transverse vortex street seems to signal the 
beginning of the drag-inertia-dominated regime. 
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of hysteresis. As K was increased in small steps (say from 0.4 to 1.5), c d  followed the 
Stokes-Wang line and then started to deviate from it rather rapidly between 
K,, = 0.7 and 0.9 (Recr x 996-1242) (according to figure 7, K,, x 0.98, Recr x 1350, 
K,  X 1.3 and Kt x 1.55). Subsequently c d  decreased and reached a minimum at 
Kmd = 1.5 (note that Kmd x Kt as in the case of /3 = 1035). When K was decreased 
at small steps, cd remained on the higher line, parallel to the Stokes-Wang line, and 
then jumped back to the laminar line at about K = 0.55. Despite numerous attempts 
it has not been possible to eliminate the hysteresis. A similar but smaller hysteresis 
effect was observed for the case of /3 = 1035 between K = 0.6 and 0.8. This is not 
shown in figure 1. The reasons for the hysteresis are neither clear nor easy to uncover, 
primarily due to the extreme difficulty of carrying out such experiments. It is 
tempting to think that for very small values of K (say K = 0.4) the disturbances in 
the flow (ambient turbulence, convection currents) are very small and the flow 
remains stable over a larger range of K (Kcr = 0.7 for /3 = 1380) which is still smaller 
than that indicated by figure 7. However, if the experiment is conducted by 
decreasing K ,  the turbulence generated in the boundary layers may increase the 
ambient turbulence in the tunnel. Even though water was kept at room temperature, 
the convection currents cannot be entirely discounted. The existence of real or 
imagined additional disturbances will tend to render the flow unstable as K is 
decreased gradually below 0.7 (for p = 1380). Finally, at K = 0.55 the flow becomes 
stable. It is unfortunate that one cannot be more precise, partly because the effects 
of wall boundary layers and ambient turbulence on the precarious nature of the 
vortical instability cannot be quantified and partly because it is extremely difficult 
to measure forces very accurately at small K-values. Probably, the time interval 
between the successive increments of K must be considerably increased (15 min in 
the present experiments) to minimize the effect of some of the disturbances. 

The first instability is not evident in the data for /3 = 11 240 (figure 3), for which 
the lowest K is about 0.8. Assuming that Hall’s analysis can be extrapolated to 
/3 = 11240, one has K,, = 0.57 and Recr = 6400. It is safe to assume that the 
boundary layer is already unstable and has undergone transition to turbulence at the 
lowest K achieved for p = 11 240 (the lowest K should be about 0.2 or so to observe 
a transition in Cd at about K = 0.57 on the basis of Hall’s analysis). It was not possible 
to conduct experiments at K-values as small as 0.2 with a large cylinder. The dry 
weight (as well as the buoyant force) of the cylinder required the use of larger-capacity 
force transducers which, in turn, made the measurement of very small forces nearly 
impossible. The electronic amplification of the unfiltered signals resulted in excessive 
noise. Since a decision was made not to filter the data, it  was preferred to begin with 
a sufficiently high enough K value such that the noise-to-signal ratio was less 
than 5 yo. 

The minimum Cd occurred a t  Kmd x 3.5. It was not possible to determine K,  for 
/3 = 11 240. Figure 7 shows that the transition and separation occur almost 
simultaneously for ,9 x 2600 ( K  x 1.25, Re = 3250). For larger B, transition occurs 
earlier and, as noted by Bearman (1985), delays separation to a higher K. Thus, for 
/3 = 11 240, separation is expected to occur at K ,  x 3, using a linear extrapolation 
of the data shown in figure 7. 

Figure 4 shows the data obtained with the rough cylinder for ,8 = 1800. As noted 
earlier, the instability should begin at Kcr x 0.4 (probably at. a smaller K on the basis 
of figures 1-3), a value which was unattainable in the present experiments. Apparently, 
the boundary layer has become unstable by the time K reaches a value of about 0.45 
(lowest K in  figure 4). Subsequently, c d  decreased rapidly, while remaining on a line 
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nearly parallel to the Stokes-Wang line, and reached its minimum value at  
Kmd x 2.4. In  summary, the transition a t  Kt x 1.1 is followed by separation at 
K, x 1.9 (Re x 3400) and minimum drag at  K,, x 2.4. Once again the delay in 
separation is attributed to the earlier transition in the boundary layer. 

The foregoing suggests that the flow becomes unstable to axially periodic vortices 
a t  a critical value of the Keulegan-Carpenter number for a given B and k / D .  The 
effect of roughness is to precipitate instability and transition. For smooth cylinders 
and for B smaller than about 2600, separation precedes transition to turbulence in 
the boundary layers. In this case, the minimum drag and the transition occur at about 
the same K. When the transition precedes separation, then the separation is delayed 
to a higher K-value. In this case too the minimum drag nearly corresponds to the 
occurrence of separation, K ,  being slightly smaller than Kmd. 

Two additional observations may be made regarding the data shown in figures 1 4 .  
First, the inertia coefficient C ,  is larger than 2, at  least for K < K,, and nearly 
identical to that given by ( 5 ) .  The ideal values of C, are 2.07, 2.06, 2.05, and 2.02 
for p = 1035, 1380, 1800, and 11 240, respectively. These values are not shown in 
figures 1 4  for sake of simplicity. Secondly, one cannot isolate the contribution of 
vortex shedding by subtracting cd given by the Stokes-Wang analysis [see (4)] from 
the measured C, since the analysis cannot account for the drag on smooth or rough 
cylinders with unstable or turbulent boundary layers, particularly in the range 
K,, < K < Kmd. 

4. Conclusions 
In-line force measurements and flow-visualization studies on smooth and rough 

circular cylinders have shown that (i) the theoretical values of the inertia coefficient 
agree quite well with those obtained experimentally for Keulegan-Carpenter numbers 
smaller than that corresponding to the inception of boundary-layer transition ; (ii) 
the drag coefficient predicted by the Stokes-Wang analysis agrees well with that 
obtained experimentally for K < K,, a t  which the flow becomes unstable (shown only 
for two smooth cylinders) ; (iii) the critical regime is followed either by separation and 
transition or by transition and delayed separation. In  either case, separation and 
minimum drag occur almost simultaneously ; (iv) roughness precipitates instability 
(shown here for one /? only) and transition to turbulence in the boundary layers. Its 
net effect is to increase C,, relative to the Stokes-Wang prediction, and to delay 
separation; (v) Hall’s analysis and Honji’s conjecture that the streaked flow may form 
outside the range 70 < < 700 are shown to be valid for /3 < 5500. 
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